
Epistemic Risk reduction:

regulating online spaces

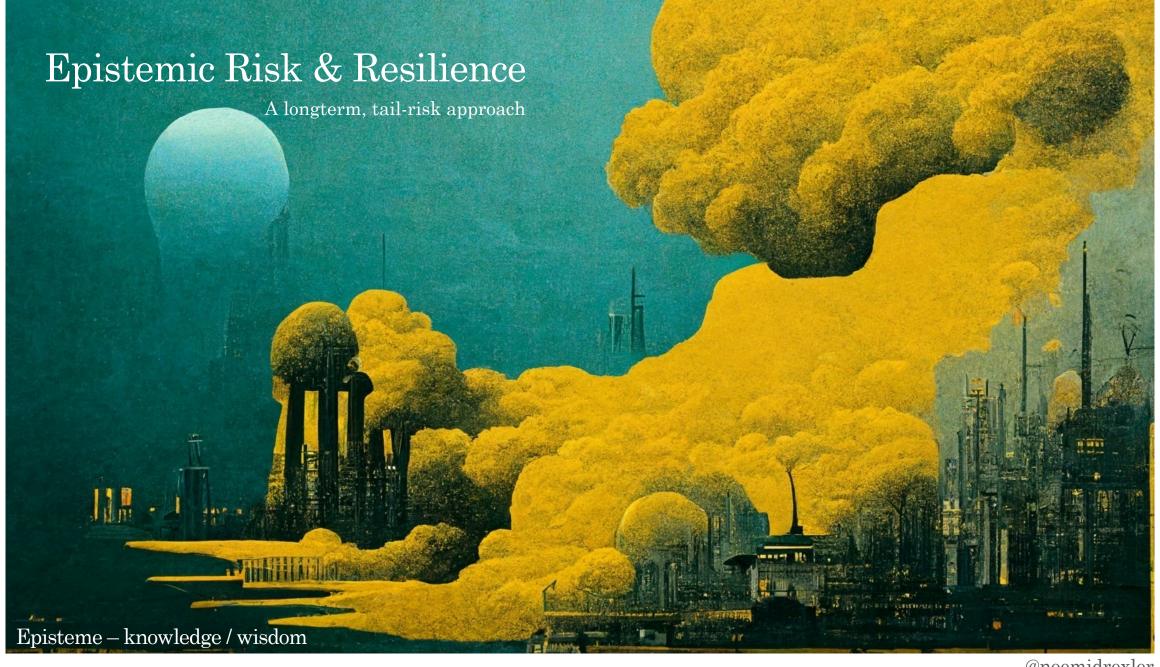
Carla Zoe Cremer, Human Information Processing Lab, Centre for the Governance of AI

A framework

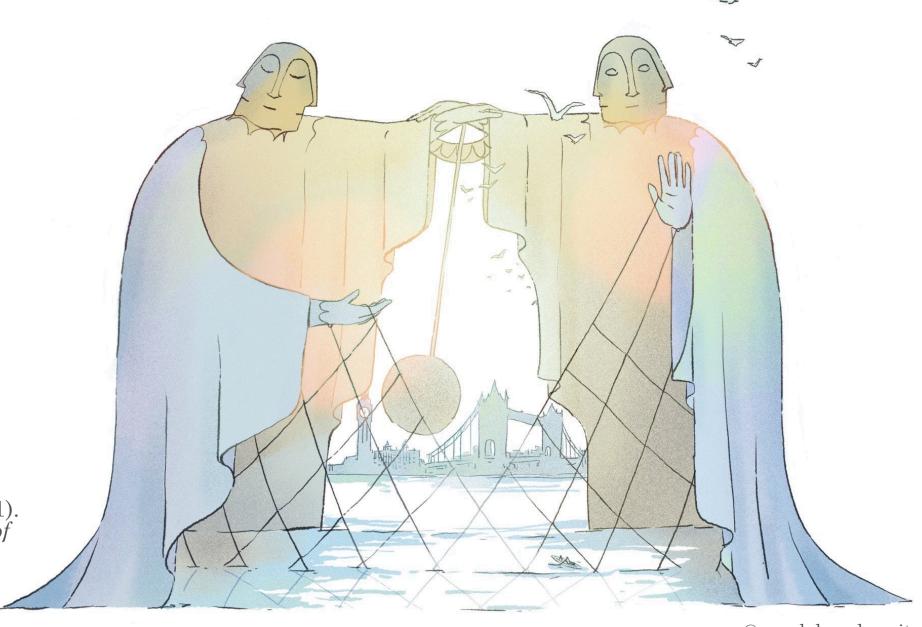
Opinion formation as behavior

Every environment promotes and curbs certain behaviors

Behavior in space


Spaces embed values and determine political outcomes.

Mark Beissinger (Princeton University Press, 2022).


@noemidrexler

Epistemic Risk

&

Resilience

Cremer, C. Z., & Kemp, L. (2021). Democratising Risk: In Search of a Methodology to Study Existential Risk

@magdalenadomeit

- Architecturalfeatures > Content
- Content-neutral interventions
- Psychology Research

@noemidrexler

Conspiracy

&

Democracy

Schaeffer et al. July 2022; https://doi.org/10.1073/pnas.2203149119

Radnitz, S. (2022). Why Democracy Fuels Conspiracy Theories. *Journal of Democracy*, 33(2), 147–161.

Cusimano, C., & Lombrozo, T. (2021). Reconciling scientific and commonsense values to improve reasoning. *Trends in Cognitive Sciences*, 25(11), 937–949.

Pennycook, G., & Rand, D. G. (2019). Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. *Cognition*, 188, 39–50.

Hard choices

and who gets to decide

Trade-offs:

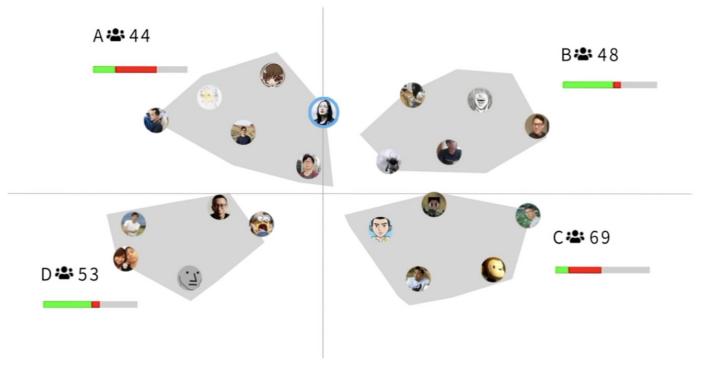
• eg. harmful content vs self-curated feeds

Arbiters of politics:

- Scheck, Jeff Horwitz and Justin. 2021.
- Querdenker as test-bed

Productive polarization?

• Stray, 2022

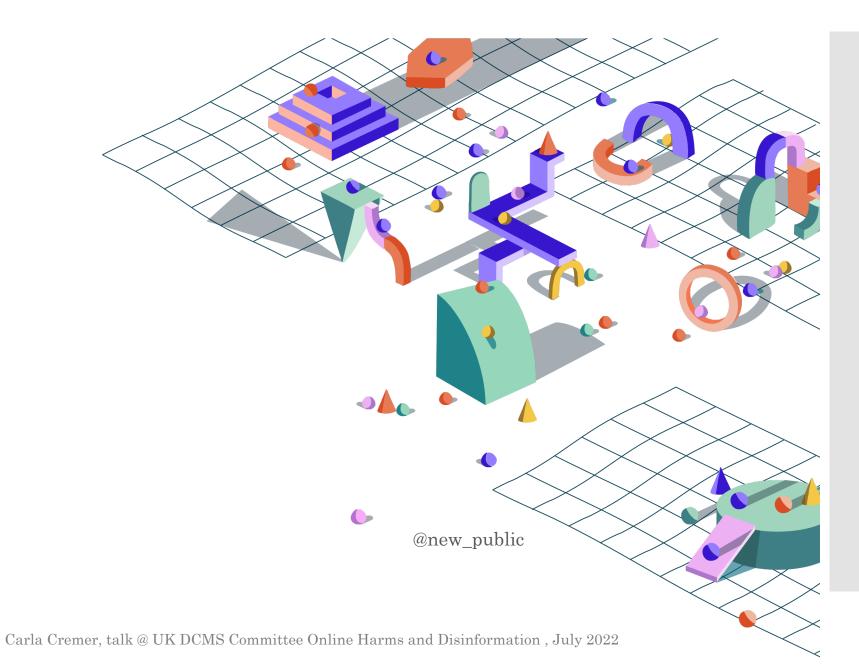

"This could be a good case study to inform how we tackle these problems in the future"

"An individual can question election results. But when it's amplified by a movement, it can damage democracy. There is harm in the way movements shift norms and an understanding of collective truth."

Participation

is necessary
works
must be researched

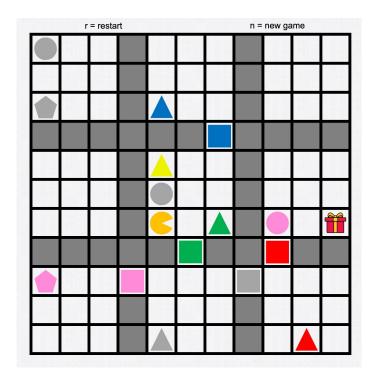
"Uber will put taxis out of business"


• Landemore (2017); vTaiwan, Landemore (2021), <u>OECD</u> (2020); <u>Lee</u> et al. (2019)

- Features facilitating cognitive frames;
 - Silva, A., et al. (2022). *BIT Report*, 36.
 - New Public Signals Research Overview
- What is democratically important content?
- Polarisation tipping points?
 - Stray, J. (2022)
- Algorithmic consensus finding
 - <u>Koster, R et al.</u> (2022). Humancentred mechanism design with Democratic AI. *Nature Human Behaviour*, 1–10.
 - <u>Pol.is & vTaiwan</u>; MIT Technology Review 2018


In dire need of psychological theory

- Deliberation
- Benchmarks --- verification
- Markers --- correlates of 'healthy' conflict / discourse
- Metrics --- recommendation performance


We need a cognitive theory of online spaces

Human information processing lab

- truth-seeking games
- curriculum and information sharing
- validity must be tested in the wild

Dumbalska, 2022

Security &

Control

Suggestions

Epistemic Risk Reduction

- Legal Requirement for research: effects of novel architectural features
- Compensations: users surveys and deliberations
- Participatory Architecture Assessments
 - OECD. <u>2020</u>. Innovative Citizen Participation and New Democratic Institutions (March 2, 2021).
 - · Cremer, C. Z., & Whittlestone, J. (2021). Artificial Canaries
 - Lee, M. et. al.(<u>2019</u>). WeBuildAI: Participatory Framework for Algorithmic Governance. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–35.

Proactive technology assessments

Online Safety Bill

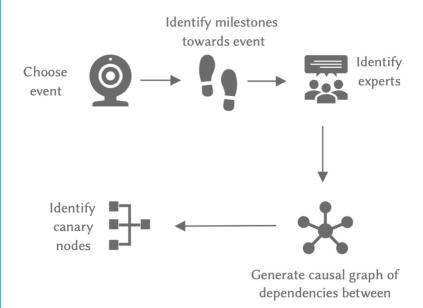
- Verification: assessing efforts relies on knowing what's possible
- Proactive technology: assessments
 - Expert identification
 - Limitation assessment -- > identify misapplication

Cremer, C. Z. (2021). Deep Limitations? Examining Expert Disagreement over Deep Learning. *Progress in Artificial Intelligence*, *Springer*

Cremer, C. Z., & Whittlestone, J. (2021). Artificial Canaries: Early Warning Signs for Anticipatory and Democratic Governance of AI

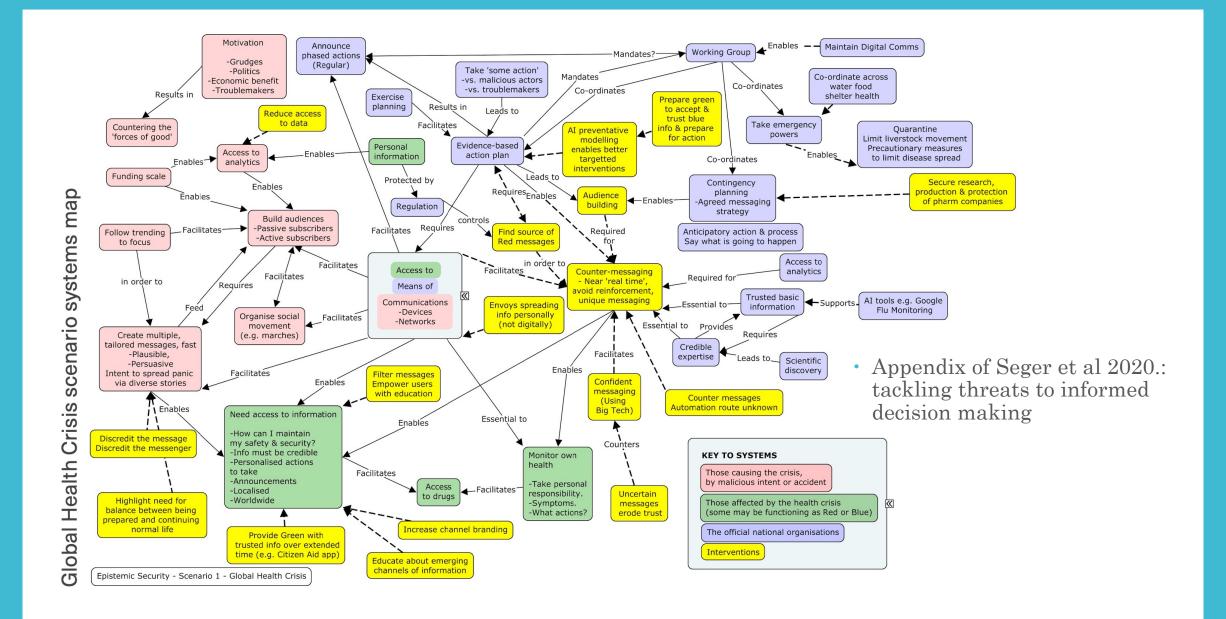
Causal reasoning : the ability to detect and generalise from causal relations in data.	Common sense: having a set of background beliefs or assumptions which are useful across domains and tasks.
Meta-learning: the ability to learn how to best learn in each domain.	Architecture search : the ability to automatically choose the best architecture of a neural network for a task.
Hierarchical decomposition: the ability to decompose tasks and objects into smaller and hierarchical sub-components.	Cross-domain generalization : the ability to apply learning from one task or domain to another.
Representation: the ability to learn abstract representations of the environment for efficient learning and generalisation.	Variable binding: the ability to attach symbols to learned representations, enabling generalisation and re-use.
Disentanglement: the ability to understand the components and composition of observations, and recombine and recognise them in different contexts.	Analogical reasoning: the ability to detect abstract similarity across domains, enabling learning and generalisation.
Concept formation: the ability to formulate, manipulate and comprehend abstract concepts.	Object permanence: the ability to represent objects as consistently existing even when out of sight.
Grammar: the ability to construct and decompose sentences according to correct grammatical rules.	Reading comprehension: the ability to detect narratives, semantic context, themes and relations between characters in long texts or stories.
Mathematical reasoning: the ability to develop, identify and search mathematical proofs and follow logical deduction in reasoning.	Visual question answering: the ability to answer open-ended questions about the content and interpretation of an image.
Uncertainty estimation: the ability to represent and consider different types of uncertainty.	Positing unobservables: the ability to account for unobservable phenomena, particularly in representing and navigating environments.
Reinterpretation: the ability to partially re-categorise, re-assign or reinterpret data in light of new information without retraining from scratch.	Theorising and hypothesising: the ability to propose theories and testable hypotheses, understand the difference between theory and reality, and the impact of data on theories.
	•

[·] Cremer, C. Z. (2021). Deep Limitations? Examining Expert Disagreement over Deep Learning. Progress in Artificial Intelligence, Springer.


Preemptive technology assessments

Expert forecasting

(could be enforced by regulator)


Assessing technological advance:

· Cremer, C. Z., & Whittlestone, J. (2021).

Assessing impact of technological advance:

- red teaming, pre-mortems, second-order effects
- Seger, E., Avin, S., Pearson, G., Briers, M., O Heigeartaigh, S., & Bacon, H. (2020).

Suggestions

Online Safety Bill

- Reporting: require reports on significant architectural changes
- Research: require research collaborations on architectural choices
- Research: require experimental access
- Proactive technology assessments

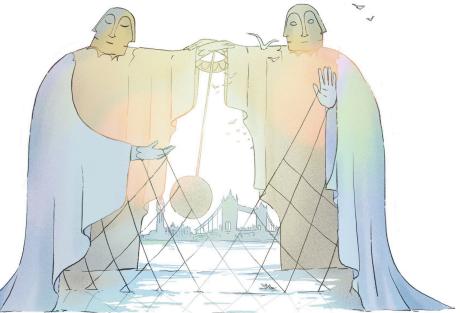
Suggestions

Epistemic Risk Reduction

- Foster data-altruism
- Foster and train open-source journalism / task force
 - OSINT / bellincat
 - sudan media capacity building project
 - · Wikimedians, Wiki Education Foundation
 - reward mechanisms

Summary

• Reporting: require reports on significant architectural changes


• Research: require research collaborations on architectural choices

• Research: require experimental access

• Proactive technology assessments

• Participatory Architecture Assessments

 Cognition research: markers of epistemic health

carla.cremer@queens.ox.ac.uk;
@CarlaZoeC

Papers:

https://carlacremer.github.io/research/

Illustrations:

https://magdalenaadomeit.com/

https://www.governance.ai/tea m/noemi-dreksler

Carla Cremer, talk @ UK DCMS Committee Online Harms and Disinformation , July $2022\,$